Math 308L - Autumn 2017 Midterm 1 October 18, 2017

Name:		
Student	ID	Number:

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

- There are 5 problems on this exam. Be sure you have all 5 problems on your exam.
- The final answer must be left in exact form. Box your final answer.
- You are allowed the TI-30XIIS calculator. It is possible to complete the exam without a calculator.
- You are allowed a single sheet of 2-sided handwritten self-written notes.
- You must show your work to receive full credit. A correct answer with no supporting work will receive a zero.
- Use the backsides if you need extra space. Make a note of this if you do.
- Do not cheat. This exam should represent your own work. If you are caught cheating, I will report you to the Community Standards and Student Conduct office.

Conventions:

- I will often denote the zero vector by 0.
- When I define a variable, it is defined for that whole question. The A defined in Question 2 is the same for each part.
- I often use x to denote the vector (x_1, x_2, \ldots, x_n) . It should be clear from context.
- Sometimes I write vectors as a row and sometimes as a column. The following are the same to me.

$$(1,2,3) \qquad \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

• I write the evaluation of linear transforms in a few ways. The following are the same to me.

$$T(1,2,3)$$
 $T((1,2,3))$ $T\left(\begin{bmatrix}1\\2\\3\end{bmatrix}\right)$

1. Consider the linear system of equations with the following augmented matrix:

[1]	2	-1	3	1 -
0	1	$^{-1}$	2	1
0	0	$-1 \\ -1 \\ 1$	1	0

(a) (8 points) What is the general solution to this system of equations?

(b) (2 points) Write down 2 particular solutions to this system of equations.

(c) (2 points) What is the dimension of the solution space?

2. Let A be the matrix

[1	0	2	0]	
0	1	3	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	0	1	

Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ to be the linear transform defined by T(x) = Ax.

(a) (3 points) What is the general solution to $Ax = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$?

(b) (3 points) Give 2 nontrivial solutions to Ax = 0.

(c) (3 points) Is T is one-to-one? If not, give a nontrivial solution to T(x) = 0.

(d) (3 points) Is T onto? If not, give a vector, b, such that T(x) = b has no solution.

- 3. Give an example of each of the following. If it is not possible, write "NOT POSSIBLE".
 - (a) (2 points) Give an example of a linear system of equations with more equations than variables and exactly one solution.
 - (b) (2 points) Give an example of a linear system of equations with more variables than equations and exactly one solution.
 - (c) (2 points) Give an example of a set of 4 distinct vectors in \mathbb{R}^3 that do not span \mathbb{R}^3 .

- (d) (2 points) Give an example of a linearly dependent set, S, of 3 vectors such that if we choose any pair of distinct vectors u, v in S, we have that u is not a scale multiple of v.
- (e) (2 points) Give an example of a linear transformation from $\mathbb{R}^3 \to \mathbb{R}^2$ that is onto.
- (f) (2 points) Give an example of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,0) = (2,3) and T(2,0) = (3,4).

4. Let $S = \{u_1, u_2, u_3\}$ be a set of vectors in \mathbb{R}^4 , where

$$u_1 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix} \quad u_2 = \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix} \quad u_3 = \begin{bmatrix} 4\\1\\3\\5 \end{bmatrix}.$$

(a) (6 points) It turns out S is not linearly independent. Show this by writing u_3 as a linear combination of u_1 and u_2 .

(b) (3 points) Write u_1 as a linear combination of u_2 and u_3 .

(c) (3 points) It should be clear that S does not span \mathbb{R}^4 . How many additional vectors are required to span \mathbb{R}^4 ? Be sure to briefly justify your answer.

5. Let

 $u_1 = (1, 0, 0), u_2 = (1, 1, 0), u_3 = (1, 1, 1).$

(a) (3 points) Express (0, 1, 0) as a linear combination of u_1, u_2, u_3 .

(b) (3 points) Express (0, 0, 1) as a linear combination of u_1, u_2, u_3 .

(c) (3 points) Suppose $T : \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation such that $T(u_1) = (1,0), T(u_2) = (0,1)$, and $T(u_3) = (1,1)$. There exists a matrix A such that T(x) = Ax. What is A? (Hint: Use the first 2 parts and the fact that T is linear.)

(d) (3 points) Is T one-to-one? Is it onto? Briefly explain why. (Hint: This part does not require the correct solution to the 3rd part.)